GETTING THE ROI FROM YOUR NEW LASER SYSTEM

William E. Lawson, P.E. Presented at ICALEO 97

In order to successfully implement a new laser processing system in your manufacturing process the following are the main things to be kept in mind:

- 1. The traditional direct economic benefits of an improved process.
- 2. The future indirect benefits that are difficult to quantify before the new technology is implemented.
- 3. The proper installation and facilities as recommended by the system supplier and other users.
- 4. The absolute requirement to take the time to train people and change processes to utilize the new system. As they say, "Pay now or pay later."

In our experience it is normal for a company adding a new laser technology to take six months to a year to feel comfortable enough to fully utilize the technology they bought. With good planning and training before installation, most systems will be producing good parts at speed in a few weeks. However it will take much longer for your entire manufacturing process to be able to function well and know how to handle normal problems.

There are a number of papers documenting companies' experiences implementing a new laser process. A typical one is detailed in "Case study: How one Laser Fabrication Center Made the Shift to Automation," by Edmond Jarrell for the Laser Cutting & Welding Conference, May 3-5, 1994 for the Fabricators & Manufacturers Association.

Theirs was a successful implementation with the primary benefit being the "ability to handle changing customer requirements quickly" as well as the financial benefits of a great reduction in raw material cost, increases in flexibility, reduction in setup time and a great reduction in lead times. However, to quote some of the things that they would concentrate more on:

More in-house engineering support

More cross-functional involvement from plant personnel

More attention to the socio-technical details earlier

More technical discussions with in-house engineering and computer technical support personnel earlier

Earlier and more complete training of maintenance personnel

More involvement of the quality assurance organization

More investigation regarding availability of service personnel

They also found that some of their other processes, such as CAD, needed to be changed and upgraded to feed information to the new system. This is typical when introducing a new procedure; changes in one process may force changes in other processes in the company.

When you are contemplating purchasing a laser system there many things to consider.

Criteria for Selecting the Correct System

Materials to be processed

Material thickness

Function required

- 1. Cut
- 2. Weld
- 3. Drill
- 4. Etc.

Processing speed requirements

Accuracy requirements

Material impact specifications

- 1. Heat affected zone
- 2. Micro cracking
- 3. Recast layer
- 4. Kerf width
- 5. Etc.

Economics

- 1. Initial cost
- 2. Material savings
- 3. Labor savings
- 4. Quality effects
- 5. Speed increases

Service after installation

Key Factors for Success

Installation requirements

- 1. Delivery interval
- 2. Quality run-off
- 3. Support and service

Schedule for regular preventive maintenance

Operators who are committed, trained and stay with the job

Early involvement of all personnel

Strong commitment of upper management

Enough time to get up to speed, not expecting instant miracles

ECONOMIC CONSIDERATIONS

The justification of laser systems requires different thinking than for hard tooling.

Laser System		Conventional Hard Tooling
Multi-use, flexible		Single purpose
Capital	does not equal	Tooling
Strategic thinking, long range planning. Costs spread over	does not equal	Specific product investment. Costs only spread over volume
number of parts		for one part

Tangible Costs

Capital Equipment

Cost of the equipment Cost of freight & installation Cost of operator/maintenance training Sale of old equipment Tax on new equipment

Operating Costs of the Process

Direct labor
Indirect labor
Subcontracting
Maintenance
Downtime for maintenance, repair and tooling
Tooling including tooling inventory
Power & utilities
Materials & supplies
Part inspection
Scrap & rework
Assembly costs (ie. nameplates)
Floor space utilization
Taxes & insurance
Operator safety
Machine programming

Inventory Changes

Reduced inventory volume Reduced inventory per piece value

Reduced safety stock

Other Impacts On Revenue

Change in volume (increased capacity)
Reduced lead times
Increased quality
New product introduction
Manufacturing flexibility

Intangible Savings

Quality and Reliability Improvements

Reduction of rework/scrap
Reduction in returns due to process quality
Part inspection costs
Risk of product recalls due to process quality
Risk of lost business due to quality issues

Responsiveness to Marketplace

Shorter production cycle times
Capability to respond more quickly to short-term changes in market demand (volume or mix)
Increased market share/sales revenues due to reduced lead time

Production Flexibility/Efficiency

Elimination of secondary processes

Reduced lead-time, piece costs and scheduling decisions

Higher product variety of low volume goods (at lower cost)

Higher potential for customized production

Capability to respond to longer-term changes in product design or product mix

Increased market share/sales revenues due to higher capacities and/or faster new product introductions

Increased customer service/satisfaction

Improved competitive positioning with new technologies

Reduced floor space requirements

Overhead Improvements

Reduction in managerial, engineering, clerical and shop support requirements due to the elimination/reduction of non-value added activities

Reduced safety costs, including insurance

Value of real-time information

Inventory Improvements (sometimes tangible)

Cost savings of lower average inventories Cost savings of lower per piece costs Reduction of safety stock Reduced floor space requirements Lower property (inventory) tax

NewTech Development, LLC 1917 County Road I, Somerset, WI 54025 USA Tel 715-247-3242 Fax 715-247-3594 www.newtechdev.com Reduced inventory management manpower

Impact on Human Resources

Increased employee morale and safety
Upgraded technical skills among employees
Increased managerial acceptance/experience with advanced automation and innovation

TRAINING

Laser technology is not difficult to learn, however, there usually are a large number of new things to learn and no person can expect to learn everything in a week of training. The time required to learn a new laser process varies with the complexity but is extended not only because of the amount of information but most importantly because of the relatively slow speed that humans can assimilate new information and apply it. If possible, a day of training every two weeks along with using the knowledge in between is the most efficient way to train the average person on a new technology.